Different Designs of Feeding Aids for Cleft Palatal Defects

Anshul Chugh*, Divya Dahiya¹, Harleen Thukral¹, Sunita Verma¹, Anamika Ahlawat¹ and Amit Dahiya²

¹Department of Prosthodontics and Crown and Bridge, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India
²Department of Orthodontics, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Dental Sciences, Rohtak, Haryana, India

Abstract

Cleft lip and palate is a congenital anomaly resulting in functional, esthetic and psychological disharmony of the patient. In infants, parents face a major problem in feeding them because of oro-nasal communication prior to any surgical intervention. In this article, various designs of passive feeding plates have been described to meet the nutritional demands of the infants. In young children, active feeding plates help in improving functioning along with the naso alveolar moulding.

Keywords: Cleft lip and palate; Feeding aid; Active plates; Passive plates

Clinical Significance

This article presents various designs of passive and active feeding aids for nutritional needs of cleft lip and palate patients.

Introduction

Cleft lip and palate involving orofacial region are most common congenital anomaly. It can either be syndrome associated or non-syndromic. Cleft patients are associated with a lot of problems like, feeding difficulties, facial growth deficiency, dental, esthetic, psychological problems, velo-pharyngeal incompetence, otologic problems like middle ear infection, Eustachian tube dysfunction, delayed speech. These necessitate a multidisciplinary approach. But immediate concern for a newborn is feeding difficulty [1-6].

Feeding problems occurs because child is not able to create sufficient negative intraoral pressure (suction) during feeding. It also affects bolus organization, bolus retention before swallowing, and also initiation of swallowing itself (Wolf and Glass) Feeding is further complicated by, nasal regurgitation, excessive air intake, and burping, coughing, choking and prolonged feeding causing fatigue [7].

A study by Pandya and Boorman found a significant decrease in failure-to-thrive rates for all infants with cleft palate, including syndromic cases after an early feeding program was implemented that involved growth monitoring, domiciliary visits, support of breast-feeding and feeding education. However, there is increasing emphasis on neonatal intervention that may include modified bottles and nipples, feeding plates, direct breast-feeding, and particular feeding techniques. But this management is insufficient if defect are large. Early surgical repair of the palate is a viable option. But usually it needs to be postponed until certain age and weight gain of the infant. Orogastic or nasogastric tube can be used but for limited time. In such patients, feeding obturator is a ray of hope [3,4,8].

Objectives of Feeding Obturator

- Create rigid platform against which baby can press the nipple and extract milk.
- Help in creating negative pressure thus reducing regurgitation, choking and thus reduces time of feeding also.

- Help in proper tongue position thus preventing its interface in growth of palatal shelves and allowing functional development of jaw.
- Contribute to speech development.
- Reduces nasopharyngeal infection preventing food regurgitation in nasopharynx [5-12].

Materials and Methods

In this article we have fabricated various designs of the feeding plate. We are discussing the role of each design their merits and demerits [10-14]. Depending upon whether appliance places any force on alveolar segment or not these can be grouped into

a) Active
b) Passive

Different possible designs of feeding obturators are:

Based on material used
1. Heat cure resin
2. Autopolymerising resin
3. Visible light cure resin
4. Clear autopolymerising resin
5. Flexible plates

Based on age of the patient
Days and months:
1. Flexible plates
2. Feeding plate with extraoral elastics
3. Feeding plate with extraoral wire/suture
4. Feeding plate with added nasal stent
5. Feeding plate with cheek pad
6. Overlay type feeding plate

Years:
1. Nance type feeding plate
2. Feeding plate with Jackson’s clasp

*Corresponding author: Dr. Anshul Chugh, MDS, Associate Professor, Department of Prosthodontics and Crown and Bridge, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Dental Sciences, India, Tel: +9101262213007; E-mail: dr.anshulchugh@rediffmail.com

Received June 13, 2016; Accepted August 01, 2016; Published August 03, 2016

Copyright: © 2016 Chugh A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Passive plates

The passive plates do not apply any force, they serve to provide an artificial palate for the infant and permit functions like swallowing and feeding in a more normal manner. They also serve to prevent the widening of the cleft due to the activity of the tongue.

1. Construction of feeding obturator in a day using autopolymerising resin and incorporation of dental floss to avoid gagging and accidental swallowing (Figure 1).
2. Construction of feeding obturator in a day using autopolymerising resin attaching two 18G orthodontic wire that extend out of mouth to avoid accidental ingestion or aspiration of obturator. Application of some acrylic resin at sharp end of wire to avoid injury to both child and parent. It can be modified by incorporating the elastics or head band to aid in retention (Figures 2-4).
3. Vacuum tray fabrication because of its added advantage over acrylic obturator of being mouldable and soft texture with less possibility of soft tissue injury, good fit to ridges and palate and light in weight. But these are not economical, and can cause irritation to palate (Figure 5).
4. Fabrication of pre alveolar nasal molding plate (PNAM) with heat cure clear acrylic resin with retentive acrylic button at 45 degree to occlusal plane in upward direction incorporation of stretchable extra oral elastic in retentive button in a hole that can be retained extraoraly with micropore (Figure 6).
5. Fabrication of pre naso alveolar molding plate with nasal stent using clear heat polymerized resin with an extraoral retentive button positioned at 45 degree to occlusal plane on labial flange facing downward. A wire added to upper end of button end of wire coated with permasoft to avoid injury to nasal soft tissue. Nasal cartilage molding is done by applying gentle pressure by activating wire loop (Figure 7).
6. Nance obturator can be used when it is not feasible to close fistula in palate surgically, and removable appliance is also not possible. It is a modified Nance space maintainer with a acrylic plate covering the defect. Advantage is it also acts as space maintainer and we need not to remake it with growth of maxilla (Figure 8).
7. Acrylic plate retained with clasp around teeth (Figure 9).
8. Implant retained and magnet retained plate also can be made.

Active appliances

Latham's appliance: It is a fixed appliance. It consists of two acrylic plates surgically fitted to palate under general anesthesia that are connected with a hinged bar posteriorly. Manipulation is done by
rotating the hinged bar. In the area of the cleft a screw is present. The screw is turned 3/4th of a turn over 3-4 week period, every day until it is tight. It helps in repositioning of protruding premaxilla in bilateral cleft lip and palate patients, along with expansion of lateral maxillary segments. The advantage of this device is that it allows narrowing of defect by manipulating the palatal segments to desired location and thus make repair of cleft lip easy. Disadvantage is it does not cover the defect.

Jackscrew appliance: This consists of two acrylic plates fitted over the alveolar segments and attached by single or multiple jackscrews. By adjusting the jackscrew the palatal segments can be manipulated to desired location. And jackscrew also prevents the interference of tongue in cleft closure (Figure 10).

Quad helix:

Steps to be followed in fabrication of feeding plates

1. Selection of the impression tray: size of impression tray should be enough to include maxillary segments laterally, cover up maxillary tuberosities posteriorly. Prefabricated trays also are also available commercially (Coe laboratories, Chicago) for cleft lip and palate infants.
2. Making Primary impression. The making of the impression in an infant with a cleft palate is a critical procedure.
3. Primary cast was fabricated with dental stone (type III gypsum product)
4. Custom tray fabrication with autopolymerising resin.
5. Final impression made with rubber base impression materials to record precise details.
6. Master cast fabrication and excessive undercut blocking with modeling wax
7. Wax pattern adaption on master cast.
8. Flasking, dewaxing procedure and feeding plate fabrication with heat cure acrylic resin
9. Eyelets created on feeding plate to allow silk suture to pass through.

Various techniques are used to enhance retention of plate (Figure 11).

Discussion

Cleft lip and palate is congenital anomaly and it shows predilection for some races also. It may be syndromic or non-syndromic [15-17]. The syndromic types are definition associated with other malformations like in Apert’s syndrome, Pierre Robin sequence, trisomies 13 and 18, Treacher Collin syndrome, Warrensburg’s syndrome, Stickler’s syndrome. Isolated cleft lip and palate is reported to occur in approximately 1 in 700 live births, Male to female ratio for cleft lip and
Different materials that can be used for impression are:

Heavy body silicone impression material, polyvinyl siloxane impression material, low fusing impression compound and alginate have been routinely employed for making impressions of neonates with orofacial clefts.

The bite registration materials, impression compound has also been in use for the impressions of infants with oral clefts.

The putty wash impression can produce accurate impressions with good reproduction of the details and its biggest advantage is its greater tear strength and the possibility of making multiple casts with the same impression. Putty can be used with finger adaptation [23-29].

Complication encountered while making impression are:

- Engagement of impression in undercuts, and its fragmentation during withdrawal causing respiratory obstruction / asphyxiation.

Precautions taken to avoid complications are:

- Impression should be made when the infant is fully awake
- Impression should be made in proper hospital setting with a surgeon present all the time to handle airway emergency.
- Maintaining airway patency by depressing tongue with mouth mirror.
- Clean remnants of impression material after the procedure.
- Infant has not had food for at least two hour before procedure. High volume suction should be ready at all times, in case of aspiration of gastric content.
- Maintain a proper patient and dentist position. A number of positions including prone, face down, upright, and even upside down have been adopted.

Summary and Conclusion

Adequate knowledge of available treatment modalities, procedures and appliances leads to a better coordination and understanding of the efforts of the various specialties which are involved in cleft lip and palate care. A basic knowledge of possible complications and their management makes us better equipped in handling emergencies if they arise. This article describes various possible designs of feeding obturator for a cleft palate baby. Feeding obturator promotes neonatal weight gain, which is important in preparing the baby for corrective surgery.

References

