Liraglutide is an analog of the human peptide hormone GLP-1 and a member of the GLP-1 receptor agonists class, which has recently been developed for treatment of Type 2 diabetes (T2D). Incretin-based therapies are an important step forward in the management of T2D as they can provide effective glycemic control without the hypoglycemia and weight gain associated with previous therapies. An extensive program of Phase III clinical trials was developed to test the efficacy and safety of liraglutide across the continuum of care in T2D. These trials have proven liraglutide to be well tolerated and effective in managing glycemia in a variety of treatment combinations and across a wide patient population. The Phase III trial program also demonstrated that liraglutide can provide the additional benefits of weight loss, reduction in systolic blood pressure, improvement in measures of β-cell function and increased treatment satisfaction.

Keywords: GLP-1 receptor agonist • glycemic control • HbA1c • LEAD trials • liraglutide • Type 2 diabetes

Type 2 diabetes (T2D) is characterized by chronic hyperglycemia that is the result of impaired insulin sensitivity and secretion. Control of glycemia is the primary aim of treatment of T2D, as improvements are known to reduce the risk of the microvascular and macrovascular complications associated with the disease [1]. The level of glycosylated hemoglobin (HbA1c) is commonly used as a measure of plasma glucose concentration over time and the importance of glycemic control in T2D is reflected in the HbA1c goals that are set by internationally recognized bodies [2,3].

Although many therapies are available for control of hyperglycemia in T2D, they often cause weight gain or hypoglycemia, which can limit their effectiveness [2]. In recent years, however, increased understanding of the incretin hormones and their receptors has led to the development of two classes of incretin-based therapies: GLP-1 receptor agonists (RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. These therapies represent an important step forward, as they can improve glycemic control with a low risk of hypoglycemia and without weight gain (and with weight loss in the case of GLP-1 RAs) [4].

This review specifically addresses the Phase III clinical trials of the GLP-1 RA liraglutide. Liraglutide is a recently developed analog of the human incretin hormone GLP-1 that is representative of the GLP-1 RA class and which has been tested in a wide patient population. Efficacy and tolerability findings from the trials will be discussed, as well as some of the implications for use of liraglutide in clinical practice.
Clinical Trial Outcomes

Review: Clinical Trial Outcomes

Bode

Liraglutide Phase III trial program: overview & design

The Phase III trial program was designed to assess the effects of liraglutide across the spectrum of disease progression in T2D. Liraglutide was studied as monotherapy and as an addition to oral antidiabetic drugs (OADs) used at different disease stages (Figure 1).

The six LEAD trials formed the core of the trial program. The LEAD-1–5 trials compared liraglutide to OADs and insulin glargine, and the LEAD-6 study was a head-to-head comparison of liraglutide and exenatide. An additional trial, known as the 1860 study, provided a direct comparison of liraglutide to metformin across the continuum of diabetes treatment.

The trials tested liraglutide in a range of treatment combinations. The LEAD-3 trial tested liraglutide as monotherapy, and the LEAD-1 and -2 tested use as second-line therapy in combination with sulfonylurea (SU) or metformin. In LEAD-6, patients randomized to the 1.2- or 1.8-mg doses. All seven trials included the active drug, they began treatment with liraglutide

Liraglutide

Liraglutide was developed from a series of GLP-1 analogs to which fatty acid moieties had been appended [15]. The molecule differs from native GLP-1 only in addition of a C-16 palmitate moiety to lysine 26 via a glutamate spacer and substitution of arginine for arginine at position 34. Liraglutide binds plasma albumin and self-associates into heptamers, both of which are thought to prolong the molecule’s half-life [25,26]. Animal studies have provided proof-of-principle that liraglutide can improve glycemic control, reduce body weight and improve cardiovascular and β-cell function [26]. A series of successful early clinical trials subsequently determined that liraglutide can provide improvements in glycemic control and β-cell function in humans, paving the way for development of the Phase III trial program [26].

Figure 1. Overall design of the liraglutide Phase III trial program.

LEAD-1

SU + metformin vs glimepiride + metformin

LEAD-2

Liraglutide + metformin vs glimepiride

LEAD-3

Liraglutide + metformin vs sitagliptin + metformin

LEAD-4

Liraglutide + metformin + TZD vs metformin + SU + TZD

LEAD-5

Liraglutide + metformin + SU vs insulin glargine + metformin

LEAD-6

Liraglutide + metformin and/or SU vs exenatide + metformin and/or SU

Diet/exercise

Add a third oral or start insulin

Add another oral agent

Start an oral agent

Efficacy of liraglutide

Change in HbA1c

Reductions in HbA1c from baseline with liraglutide in the core periods of the Phase III trials ranged from 0.8–1.5% (Supplementary Table 1). Improvements were significantly greater with liraglutide than with comparators (TZD, SU, placebo, insulin glargine, exenatide and sitagliptin), except in LEAD-2, where addition of liraglutide to metformin treatment was comparable to addition of the SU glimepiride to metformin (Figure 2) [25–26].

However, improvements with liraglutide (0.8 and 1.1% with 1.2 and 1.8 mg, respectively) were significantly greater than with glimepiride (0.5%; p = 0.0014 and p = 0.0001 for liraglutide 1.2 and 1.8 mg, respectively) when both treatments were used as monotherapy for 52 weeks [22]. Reductions in HbA1c with liraglutide were greater in patients who had previously been treated with only diet and exercise (1.2 and 1.6% for liraglutide 1.2 and 1.8 mg, respectively) than in patients who had substituted liraglutide for an OAD (0.5 and 0.7% for liraglutide 1.2 and 1.8 mg, respectively). The advantages of liraglutide on glycaemic control were still evident 2 years later in patients who completed the LEAD-3 extension period [22]. Local guidelines should always be consulted before prescribing liraglutide.
In Europe, liraglutide is approved as dual and triple therapy with OADs [82,83], and the most pertinent data for healthcare practitioners in this area are from trials of liraglutide in combination with OADs. Liraglutide was used as dual therapy in LEAD-1 and -2, in combination with glimepiride or metformin, respectively [82,83]. Patients treated with liraglutide plus glimepiride in LEAD-1 had significantly greater reductions in HbA1c (1.1% with both liraglutide 1.2 and 1.8 mg) than patients treated with rosiglitazone (1.0%; p < 0.001) [82]. Reductions were comparable across baseline categories – reductions ranged from 1.3 to 1.5% for liraglutide 1.2 and 1.8 mg, respectively, compared with 0.9% with standard therapy [82]. In the two-head-to-head trials with other incretin-based therapies, liraglutide proved to be more effective in the reduction of HbA1c than both a DPP-4 inhibitor (sitagliptin) and an alternative GLP-1 RA (exenatide) [82]. Reductions in HbA1c in the 1860 trial, in which liraglutide 1.2 and 1.8 mg were compared with sitagliptin (all in combination with metformin) were 1.1 and 1.5% with liraglutide 1.2 and 1.8 mg, respectively, compared with 0.9% with sitagliptin [83]. Reductions in HbA1c with liraglutide were still superior to those with sitagliptin after 52 weeks of treatment in the trial extension: reductions were 1.3 and 1.5% for liraglutide 1.2 and 1.8 mg, respectively, compared with 0.9% with sitagliptin (p < 0.001) [83]. The greatest reductions with liraglutide are in line with the observation that GLP-1Ra are provided at supraphysiologi- cal levels, whereas DPP-4 inhibitors can only increase GLP-1 to physiological concentrations.

In LEAD-6, once-daily liraglutide 1.8 mg was tested head-to-head with twice-daily exenatide as second- or third-line therapy in combination with metformin and/or glimepiride. The reduction in HbA1c with liraglutide (1.1%) was significantly greater than with exenatide (0.8%; p < 0.001) in the core trial period [84]. Patients who switched from exenatide to liraglutide in the trial extension experienced further significant reductions (0.32%; p < 0.001), while patients who continued on liraglutide had relatively stable levels (0.9% for both liraglutide doses) [84]. The improved efficacy of liraglutide compared with exenatide is primarily due to its prolonged duration of action; the maximal concentration of liraglutide is not reached until 8–12 h after dosing, and liraglutide has a plasma half-life of 13 h postadministration [84]. By comparison, exenatide twice-daily achieves median peak concentration in 2 h, with a terminal half-life of 2.4 h [84].

The benefits of liraglutide in control of HbA1c evident from the individual trials, are emphasized by the results of a meta-analysis of data from across the LEAD trials. The analysis revealed that liraglutide was effective in reducing HbA1c regardless of baseline level, although greatest reductions were seen in patients with poorest initial control: a reduction of 2.5% was seen in patients whose baseline HbA1c was >10% [85]. Additionally, post hoc analysis of 1860 trial data found that reductions in HbA1c were greater with liraglutide 1.8 mg than with sitagliptin across baseline categories – reductions ranged from 0.9% for liraglutide 1.8 mg and 0.2% for sitagliptin in patients with baseline HbA1c ≤7.5% to 2.3 and 1.4%, respectively, in patients with baseline HbA1c >9% [85]. Together with individual trial results, this analysis indicates that liraglutide is effective across the disease spectrum.

In LEAD-1, liraglutide was used in combination with metformin and/or glimepiride in LEAD-1 and -5, where it was used in combination with metformin and/or glimepiride in LEAD-1 and -5, with significant weight loss compared with glimepiride in LEAD-2 [86]. Reductions ranging from 1 kg with liraglutide 1.2 mg as triple therapy in LEAD-4 to 3.4 kg with liraglutide 1.8 mg in combination with metformin in the 1860 study [82,83]. The significant weight loss compared with glimepiride in LEAD-2 indicates that there are advantages to using liraglutide rather than SU in combination with metformin, despite the similar effects of the two combina- tions on glycemic control [82].

The 2-year results of the LEAD-3 extension demonstrate that the weight loss experienced with liraglutide can be sustained – among patients who continued the extension, weight loss with liraglutide 1.2 and 1.8 mg was 2.1 and 2.7 kg, compared with a weight gain of 1.1 kg among patients treated with glimepiride (p < 0.001) [84]. In LEAD-1, liraglutide was used in combination with SU, which is known to cause weight gain [82,83]. Body weight remained relatively stable with liraglutide.

Table 1. Change in glycosylated hemoglobin from baseline in the liraglutide Phase III studies.

<table>
<thead>
<tr>
<th>Monotherapy</th>
<th>Metformin combination</th>
<th>Metformin and SU combination</th>
<th>Metformin and/or SU combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD-3</td>
<td>LEAD-2</td>
<td>LEAD-4</td>
<td>LEAD-5</td>
</tr>
<tr>
<td>231</td>
<td>241</td>
<td>238</td>
<td>232</td>
</tr>
<tr>
<td>247</td>
<td>242</td>
<td>233</td>
<td>234</td>
</tr>
<tr>
<td>248</td>
<td>244</td>
<td>226</td>
<td>228</td>
</tr>
<tr>
<td>Baseline HbA1c</td>
<td>8.3</td>
<td>8.3</td>
<td>8.5</td>
</tr>
<tr>
<td>1.6</td>
<td>1.2</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>-1.0</td>
<td>-1.1</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>-1.1</td>
<td>-1.5</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>-1.2</td>
<td>-1.3</td>
</tr>
<tr>
<td>1.8</td>
<td></td>
<td>-1.5</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

* p < 0.005, ** p < 0.0001 versus comparator.

SU: Sulfonylurea; **TZD:** Thiazolidinedione.

Data taken from [82,83].
Meta-analysis of data from all of the LEAD trials emphasized the findings on body weight from the individual trials. Significant overall reductions in waist circumference were seen in patients using liraglutide (1.8 cm with 1.2 mg, 2.1 cm with 1.8 mg; p < 0.0001), as was the case with BMI (0.44 kg/m² with liraglutide 1.2 mg, 0.66 kg/m² with liraglutide 1.8 mg; p < 0.0001) [26]. Differences were greatest in patients with high baseline values, indicating that heavier patients are likely to experience the most weight-related benefit from liraglutide. Importantly though, a separate meta-analysis revealed that HbA₁c reductions in liraglutide treatment were independent of weight loss [36].

β-cell function

Preclinical and early clinical studies suggested that liraglutide may have a positive effect on the β-cell failure that underlies T2D [35]. However, in humans, direct measurement of β-cell function is problematic, and so the Phase III trials employed indirect measures of HOMA-B and proinsulin-insulin ratio. Across the trials there was a trend towards improvement in β-cell function among liraglutide-treated patients, which was supported by the results of a meta-analysis of data from all LEAD trials [36]. The meta-analysis revealed significant increases in HbA₁c from baseline of 35.1 and 31.7% with liraglutide 1.2 and 1.8 mg, respectively (p < 0.0001). The increase was significant versus rosiglitazone (9.5% for liraglutide 1.8 mg (p = 0.05) and versus placebo (7.4%) for both liraglutide doses (p < 0.0001); placebo encompasses arms from all trials and, therefore, a variety of treatments. The analysis also showed significant improvement from baseline in proinsulin-insulin ratio with both liraglutide 1.2 and 1.8 mg of -0.08 (p < 0.0001) – the decreases were significant versus rosiglitazone (-0.01), glimepiride (-0.02) and placebo (0.03) for both liraglutide 1.2 and 1.8 mg (p < 0.001 for all). Improvements in β-cell function (both HOMA-B and proinsulin-insulin ratio) were also observed in the 1860 study with both liraglutide 1.2 and 1.8 mg [44]. The results of these meta-analyses are supported by the longevity of the glycemic effects of liraglutide seen over 2 years in the LEAD-3 trial extension (26); such long-term control is suggestive of maintenance of β-cell function. Taken together, these findings suggest that it may be useful to consider using liraglutide early in progression of T2D when there is most β-cell function to preserve.

SBP

Across the core trials, liraglutide reduced SBP from baseline by up to 6.7 mmHg (Supplementary Table 2) [36–38]. In all the LEAD trials, reductions with liraglutide were numerically greater than with comparators. Reductions reached significance with liraglutide 1.2 and 1.8 mg versus glimepiride in LEAD-2, with liraglutide 1.8 mg versus glimepiride in LEAD-3, with liraglutide 1.8 mg versus insulin glargine in LEAD-5, and with liraglutide 1.2 and 1.8 mg versus placebo in LEAD-4 [29–31]. These findings were confirmed by a meta-analysis of data from the LEAD trials, which showed significant decreases in SBP from baseline with liraglutide 1.8 and 1.2 mg (2.6 mmHg [p = 0.0008] and 2.5 mmHg [p = 0.003], respectively) [26]. The meta-analysis found that the full impact on SBP was evident after only 2 weeks of treatment, before major weight loss occurred, suggesting that the effect is independent of weight loss. The greatest reductions in SBP were observed in patients with the highest baseline SBP: the average reduction in patients with highest baseline SBP of >140 mmHg was 11.4 mmHg with liraglutide, compared with a reduction of 7.7 mmHg with placebo. An additional analysis revealed that the significant reductions in SBP from baseline were independent of concomitant anti-hypertensive treatment [35].

Lipids & cardiovascular markers

Lipid levels, as well as cardiovascular risk markers, were assessed as secondary endpoints across the Phase III trials. A meta-analysis of LEAD trial results revealed that there were significant reductions from baseline in patients treated with liraglutide 1.8 mg in total cholesterol (0.13 mmol/l), low-density lipoprotein-cholesterol (0.2 mmol/l), free fatty acids (0.09 mmol/l) and triglycerides (0.2 mmol/l; p < 0.01 for all), although these decreases were not significant versus placebo or active comparators [38]. In addition, there were significant reductions from baseline in the cardiovascular risk markers brain natriuretic peptide (11.9%; p < 0.01) and high-sensitivity C-reactive protein (23.1%; p < 0.0001) [39]. A separate meta-analysis determined that treatment with liraglutide 1.8 mg significantly reduced levels of the cardiovascular risk marker plasminogen activator inhibitor 1 over 26 weeks (7.6%; p = 0.0008) [36]. These findings suggest that liraglutide may beneficially affect cardiovascular risk in addition to SBP, body weight and glycemic control.

Efficacy of liraglutide in Asian patients with T2D

The efficacy of liraglutide in Asian patients with T2D has been studied in three Phase III trials [34–36]. Two of the trials were conducted to determine if liraglutide was similarly effective in patients in Japan and in Chinese patients, and were similar in design to the LEAD-3 (1700 study; liraglutide monotherapy vs SU monotherapy [47] and LEAD-1 trials (1701 study; liraglutide in combination with an SU vs SU monotherapy [41]); however, the maximum administered dose of liraglutide in the Japanese studies was 0.9 mg once daily. The third study (1796 study) was conducted in an Asian population from China, South Korea and India, and had a similar study design to LEAD-2 – liraglutide (0.6, 1.2 and 1.8 mg) versus SU, both in combination with metformin [44]. In line with the results from the LEAD-3 trial, liraglutide monotherapy in Japanese patients with T2D resulted in a significantly greater reduction in HbA₁c compared with SU monotherapy (−1.9 vs −1.4%, respectively; p < 0.0001), and improvement in body weight (0.92 vs 0.99 kg; p < 0.0001) [46]. In the 1701 study, patients randomized to receive liraglutide (either 0.6 or 0.9 mg) as an addition to SU monotherapy had significantly greater decreases in HbA₁c compared with those who received placebo (−1.46 and −1.56 vs −0.40%, respectively; p < 0.0001 for both doses of liraglutide vs placebo) [37]. Consistent with results from the LEAD-1 trial, the use of liraglutide (0.6, 1.2 and 1.8 mg) in combination with SU negated the weight benefits of liraglutide (weight change +0.06 and −0.37 kg, respectively) although, a
significant reduction in weight was observed in the placebo group receiving SU monotherapy (-1.12 kg (a)). The changes in HbA1c and body weight observed at week 24 in both these Japanese studies were maintained at week 52 (a,b), also consistent with the LEAD-1 and LEAD-3 studies.

Data from the 16-week 1796 study are also consistent with those from Caucasian patients (LEAD-2) (c,e). The use of liraglutide (1.2 or 1.8 mg) or glimepiride in combination with metformin resulted in similar improvements in HbA1c (-1.36, -1.45 and 1.39%, respectively). However, as seen in LEAD-2, patients taking liraglutide had greater weight loss and less frequent hypoglycemia than patients taking glimepiride. Reported improvements in β-cell function (which were similar with liraglutide and glimepiride) and SBP (significantly greater with liraglutide vs glimepiride) were also in accordance with those from LEAD-2 (a,e).

These data suggest that the clinical efficacy of liraglutide is similar in Asian and Caucasian patients with T2D. The use of liraglutide 1.2 and 1.8 mg was well tolerated in an Asian population, suggesting that these doses may also be transferable to Japanese patients (a,e).

Composite end points: measurement of clinically relevant variables

Treatment of T2D is a multifaceted challenge: in addition to hyperglycemia, patients are often overweight and suffer from hypertension and dyslipidemia. To assess the broader benefits of liraglutide treatment, the proportions of patients in the Phase III trials meeting two composite end points were assessed.

- HbA1c <7.0% with SBP <130 mmHg & no weight gain

This first end point was designed to address variables considered in the standards of care recommended by the ADA (a). A meta-analysis approach was used to determine the proportion of patients in the LEAD-1–6 trials achieving this triad after 26 weeks of treatment (a,b). The end point was achieved by 26% of patients taking liraglutide 1.8 mg and 22% of patients taking liraglutide 1.2 mg. The odds ratios for achieving the composite end point were significantly improved for patients taking liraglutide 1.8 mg than comparator treatments (p < 0.005 for all, Figure 4). This second end point was also as expected in the 1860 trial, where it was achieved by 46 and 37% of patients taking liraglutide 1.2 or 1.8 mg, respectively, compared with 14% of patients taking sitagliptin (p < 0.0001) (d,e).

Taken together, the findings from analyses of these two composite end points indicate that liraglutide can be useful in limiting the challenges commonly associated with T2D and its treatment.

Treatment satisfaction

Health-related quality of life of patients with T2D is lower than that of the general population (a). Factors including glycemic control, presence of diabetic complications and the complexity of treatment regimens can affect quality of life (a,e). Patient perception of treatment and effects on quality of life are important in determining effectiveness of any therapeutic agent, and so in four of the LEAD trials, LEAD-2, -3, -6 and 1860, patient satisfaction was assessed.

In LEAD-3, in which liraglutide and glimepiride monotherapy were compared, a validated self-administered, 77-point questionnaire was used to assess weight perception, psychological wellbeing and overall quality of life (a). In line with the fact that patients tended to gain weight with glimepiride and lose weight with liraglutide, patients treated with liraglutide 1.8 mg were 52% less likely to feel overweight than patients treated with glimepiride. Overall patient assessment of weight, compared with the reference point ‘my weight is just right’, was more favorable with liraglutide 1.8 mg than with glimepiride (score of 40 with liraglutide 1.8 mg vs 48.7 with glimepiride; p < 0.002). Importantly, mental and emotional health, as well as general perception of health, also improved more with liraglutide 1.8 mg than with glimepiride.

In LEAD-2, -6 and the 1860 trial, patient satisfaction was assessed using the Diabetes Treatment Satisfaction Questionnaire (DTSQ) (a,e). Clinical outcomes from the LEAD-2 trial (in which liraglutide was compared with glimepiride, both in combination with metformin) have been fully reported from the core 26-week trial period, but data on patient-reported outcomes are available from both the core trial and an 18-month extension period. Results at 26 and 78 weeks indicated an improvement in overall treatment satisfaction that was comparable in patients treated with liraglutide and glimepiride: at 26 and 78 weeks, respectively, scores were 12.5 and 12.4 for liraglutide 1.2 mg, 10.9 and 10.8 for liraglutide 1.8 mg, and 11.7 and 11.6 for glimepiride. After week 26, the trial was unblinded, and so was a direct comparison of an injectable and an oral treatment. The fact that patients injecting liraglutide had similar improvement in treatment satisfaction to patients taking glimepiride is a strong indicator that injection with liraglutide does not negatively affect patient perceptions and acceptance of treatment. In head-to-head trials of liraglutide with other treatment satisfaction scores were 13.9% higher in patients taking liraglutide than those taking sitagliptin (p = 0.03). That liraglutide resulted in greater treatment satisfaction

Figure 4. Patients achieving composite end points in the LEAD trials. (A) HbA1c <7%, no weight gain, systolic blood pressure <130 mmHg. (B) HbA1c <7%, no weight gain, no hypoglycemia.

Design, findings & implications of the liraglutide Phase III clinical trial program

12.4 for liraglutide 1.2 mg, 10.9 and 10.8 for liraglutide 1.8 mg, and 11.7 and 11.6 for glimepiride. After week 26, the trial was unblinded, and so was a direct comparison of an injectable and an oral treatment. The fact that patients injecting liraglutide had similar improvement in treatment satisfaction to patients taking glimepiride is a strong indicator that injection with liraglutide does not negatively affect patient perceptions and acceptance of treatment. In head-to-head trials of liraglutide with other treatment satisfaction scores were 13.9% higher in patients taking liraglutide than those taking sitagliptin (p = 0.03). That liraglutide resulted in greater treatment satisfaction

52.3 for liraglutide 1.2 mg, 51.9 and 51.8 for liraglutide 1.8 mg, and 49.9 and 49.9 for glimepiride. After week 26, the trial was unblinded, and so was a direct comparison of an injectable and an oral treatment. The fact that patients injecting liraglutide had similar improvement in treatment satisfaction to patients taking glimepiride is a strong indicator that injection with liraglutide does not negatively affect patient perceptions and acceptance of treatment. In head-to-head trials of liraglutide with other treatment satisfaction scores were 13.9% higher in patients taking liraglutide than those taking sitagliptin (p = 0.03). That liraglutide resulted in greater treatment satisfaction

12.4 for liraglutide 1.2 mg, 10.9 and 10.8 for liraglutide 1.8 mg, and 11.7 and 11.6 for glimepiride.
Liraglutide was found to be well tolerated across the Phase III program. The incidence of hyperglycemia, which is of particular interest with therapies that control glycemia, was found to be low with liraglutide treatment. Of 2739 patients treated with liraglutide in the core trials, only seven experienced episodes of major hypoglycemia (defined as blood glucose <3.1 mmol/l and requiring third-party assistance). Minor hypoglycemia (blood glucose <3.1 mmol/l) also occurred infrequently with liraglutide, especially when used without SUs. Rates ranged from 0.03 events/subject/year with liraglutide in combination with metformin (LEAD-2) to 1.93 events/subject/year in combination with metformin and glinide (LEAD-6) [28-30].

Gastrointestinal side-effects, which have been found to be common with GLP-1 RAs [30,32], were generally less frequently reported adverse events with liraglutide. In most trials, the most common gastrointestinal effect was nausea. The proportion of patients experiencing nausea ranged from <11.0% with liraglutide 1.2 and 1.8 mg in LEAD-1 (in combination with metformin and rosiglitazone) [28,32] to <3.1% with liraglutide 1.8 mg in LEAD-4 (in combination with metformin and rosiglitazone) [28,32]. Nausea was generally more common than with comparators, although, in most cases, nausea was transient and decreased after the first weeks of treatment [28-30]. In LEAD-6, when liraglutide was compared with exenatide, the incidence of nausea tended to be less persistent with liraglutide.

The cardiovascular safety of liraglutide has been reported in a pooled analysis of data from all Phase II and III studies from the liraglutide developmental program [34]. The incidence of major adverse cardiovascular events with liraglutide was lower than with all comparators (ratio 0.73) and within the US FDA cardiovascular safety limits. T2D is the leading cause of renal impairment due to inadequate glycomic control [35]. A meta-analysis of LEAD studies reported that liraglutide treatment was safe and well tolerated in patients with mild renal impairment; there was no significant difference in creatinine clearance between liraglutide-treated patients with mild renal impairment compared with those with normal renal function [36]. Furthermore, mild renal impairment did not affect Hba1c reductions or frequency of nausea in liraglutide-treated patients, compared with those with normal renal function.

There has been some discussion about the potential for pancreatitis with GLP-1 RA treatment. Incidence of pancreatitis was monitored across the Phase III trials [28]. When treatment was started in patients in earlier disease stages, there was a significantly greater risk of pancreatitis with liraglutide (<0.2%), compared with one case with a comparator (1.7 vs 0.7 cases per 1000 patient-years for liraglutide vs comparators) [36]. Calcitonin levels were also monitored during the Phase III trials, due to the fact that, in early preclinical trials in rats and mice, liraglutide was found to increase the incidence of C-cell carcinoma [27]. GLP-1 RAs were shown to stimulate calcitonin release and, following long-term exposure, C-cell hyperplasia in rats [27]. By contrast, 20 months of liraglutide treatment (at >60-times human exposure levels) in cynomolgus monkeys had no effect on plasma calcitonin levels, and C-cell hyperplasia was not detected. No patients receiving liraglutide in the LEAD program developed C-cell carcinoma and an analysis of calcitonin levels among patients exposed to liraglutide in clinical trials showed that average calcitonin levels remained at the lower end of the normal range [27].

Use of liraglutide in clinical practice
The Phase III trials have demonstrated the clinical potential of liraglutide across the continuum of T2D. Liraglutide has been shown to be effective in providing glycomic control, in a range of treatment combinations. As well as glycomic control, liraglutide was found to provide a reduction in body weight and SBP, as well as improvements in β-cell function. With these additional benefits over traditional therapies, liraglutide is an attractive option for the management of T2D.

Because liraglutide has been tested in a wide range of different treatment combinations, there is strong evidence to support its use at different stages of disease progression. However, approved indications differ between countries and regions. In Europe and the USA, for example, both 1.2 and 1.8 mg doses of liraglutide are approved for use, but use as monotherapy is only indicated in the USA [35,36]. In Europe, liraglutide is approved for use as dual or triple therapy in combination with OADs [34]. Specifically, the European Medicines Agency states that liraglutide may be used as dual therapy in addition to metformin or SU if glycemic control is inadequate with either treatment as monotherapy, and it may be used in triple therapy with metformin and SU/T2D if glycomic control is inadequate when treated with SU/T2D alone [30].

Some local guidelines for treatment of T2D now make specific reference to liraglutide (e.g., those in the UK and Denmark) [35,36], internationally recognized treatment algorithms, such as those produced by the ADA/EASD [11] and AACE/ACE [11], include guidance on GLP-1 RAs that is specifically linked to exenatide as they were written before the approval of liraglutide. As liraglutide is now approved for use in >30 countries worldwide, it is likely that the next editions of these treatment algorithms will include specific guidance on liraglutide, and affirm its place in the T2D treatment continuum.

Future perspective
The Phase III trial program demonstrated that liraglutide provides effective glycomic control, alongside reductions in body weight and SBP. In addition, liraglutide beneficially affects measures of β-cell function, as well as lipid levels and cardiovascular risk markers. These benefits are provided along with a low rate of hyperglycemia and good tolerability. Liraglutide is now approved for use across the world and it will be of interest to observe how liraglutide performs in real-life patient exposed to liraglutide in clinical trials. It will be of particular interest to observe how liraglutide performs with long-term use, especially when treatment is started in patients in earlier disease stages, where there is potential to preserve β-cell function. Although it should be noted that liraglutide is not universally approved as a monotherapy, the recently published results from the 2-year extension of the LEADER trial of liraglutide as monotherapy provide an indication that liraglutide can be effective in the long term in patients who have not progressed to advanced stages of diabetes therapy [38]. Results from 2-year extensions of the LEAD-2 and LEAD-6 trials are expected soon, and will also be relevant in understanding the long-term benefits of liraglutide.

Two trials that are yet to be fully reported will be important in determining the eventual place of liraglutide in the treatment of T2D. One trial is designed to test the addition of insulin to treatment with liraglutide and metformin. This is a treatment avenue that holds promise for patients in advanced stages of T2D, and results reported so far show that the combination can improve glycomic control [39]. Recent results indicate that exenatide can also improve glycomic control when combined with insulin [40]. The second trial, which is still ongoing, is the LEADER trial, which was designed to assess cardiovascular outcomes [41]. Results will be important in confirming the cardiovascular safety of liraglutide. Given that GLP-1 itself appears to have cardioprotective effects, and that the LEAD trials suggest positive effects of liraglutide on cardiovascular biomarkers, the results are awaited with interest.

Supplementary data
Supplementary data accompanies this paper and can be found at www.future-science.com/doi/10.4155/CLI.11.166

Executive summary
Incretin-based therapies in Type 2 diabetes
- Chronic hyperglycemia is the characteristic feature of Type 2 diabetes (T2D), and improved glycomic control is the primary aim of treatment.
- A wide range of therapies are available for management of hyperglycemia in T2D, but many treatments have the undesirable side effects of weight gain and hypoglycemia.
- The recently developed glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) can effectively manage hyperglycemia without weight gain or hypoglycemia.

Liraglutide
- Liraglutide is a GLP-1 RA, with 97% amino acid identity to native GLP-1.
- An extensive program of Phase III clinical trials has demonstrated that liraglutide can effectively and safely manage hyperglycemia across the continuum of care in T2D.

Efficacy of liraglutide
- In addition to reducing hyperglycemia, liraglutide provides the additional benefits of reduction in body weight and systolic blood pressure, as well as improvements in measures of β-cell function.
- When compared directly with other incretin-based therapies – the dipeptidyl peptidase-4 inhibitor sitagliptin and the GLP-1 RA exenatide – liraglutide performs favorably in terms of glycomic control. Weight loss is similar with liraglutide and exenatide, but significantly greater with liraglutide than sitagliptin.

Safety & tolerability of liraglutide
- Liraglutide is generally well tolerated; the most common side-effects are gastrointestinal, and these are generally mild and transient.
Financial & competing interests disclosure
Biv Bode on the speaker’s bureau and medical advisory boards for Novo Nordisk, Eli Lilly, Sanofi-Aventis and Merck & Co., and his practice has received research fees and grants from Novo Nordisk, Eli Lilly, Sanofi-Aventis, GlaxoSmithKline and Merck & Co. The author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

The author is grateful to Watermedias Médical for writing assistance in the preparation of this manuscript, funded by Novo Nordisk A/S.

References

Papers of special note have been highlighted as:
- of interest
- of considerable interest

Design, findings & implications of the liraglutide Phase III clinical trial program

The LEAD-6 trial is the only direct comparative trial between the GLP-1 receptor agonists exenatide exendate and liraglutide: over 26 weeks, liraglutide provided superior glycemic control and weight loss, although both treatments promoted similar weight loss.

A direct comparison of liraglutide with the dipeptidyl peptidase-4 inhibitor sitagliptin. Liraglutide provided superior glycemic control and weight loss to sitagliptin over 26 weeks.

Buse J, Sostoa J, Schwartz MD et al. Switching to once-daily liraglutide from twice-daily exenatide further improves glycemic control in patients with Type 2 diabetes using oral agents. Diabetes Care 33, 1500–1506 (2010).

 Reveals that the incretin effect is lost or substantially reduced in patients with Type 2 diabetes (T2D)."
reported outcomes in patients with Type 2 diabetes treated with liraglutide or glimepiride, both as add-on to metformin. Prim. Care Diabetes 4, 113–117 (2010).

52 Schmidt WE, Christiansen JS, Hammer M et al. Patient-reported outcomes are superior in patients with Type 2 diabetes treated with liraglutide as compared with exenatide, when added to metformin, sulphonylurea or both: results from a randomized, open-label study. Diabet. Med. 28, 715–723 (2011).

58 Rosenstock J, Devries JH, Seufert J et al. A new Type 2 diabetes treatment paradigm: sequential addition of liraglutide to metformin and then basal insulin detemir. Diabetes 60(Suppl. 1), A76 (2011).

Websites

101 Novo Nordisk Ltd: summary of product characteristics: Victoza 6 mg/ml solution for injection in pre-filled pen. www.medicines.org.uk/EMC/medicine/21986/SPC/Victoza+6+mg+ml+soluti on+for+injection+in+pre-filled+pen

102 Eli Lilly and Company Ltd: summary of product characteristics: Byetta 5 µg solution for injection, prefilled pen; Byetta 10 µg solution for injection, prefilled pen. www.medicines.org.uk/EMC/medicine/19257/SPC/Byetta+5+micrograms+soluti on+for+injection%2c+prefilled+pen

