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Survival analysis is often performed using the Cox proportional hazards model. 
Parametric models are useful in several applications, including health economic 
evaluation, cancer surveillance and event prediction. Flexible parametric models 
extend standard parametric models (e.g., Weibull) to increase the flexibility of the 
shape of the hazard function. We present a new SAS® macro for implementing flexible 
parametric models with a similar functionality to that of Stata®, with examples using 
data from cancer surveillance and clinical trials. Results from SAS® were identical with 
similar computational time to Stata®. The flexible parametric approach to modeling 
survival data is shown to be superior to standard parametric methods. This SAS® macro 
will facilitate an increase in the use of flexible parametric models.
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The semiparametric Cox proportional haz-
ards (PH) model has continued to dominate 
the analysis and reporting of survival data for 
over 40 years [1]. One reason is the simplic-
ity of estimating the relationship between 
covariates and the hazard rate while not 
having to make (sometimes unjustifiable) 
assumptions about the baseline hazard rate. 
However, despite the widespread use of the 
Cox PH model, there are nevertheless limita-
tions, particularly when the PH assumptions 
are violated [2].

Where modeling covariates whose effects 
may vary over time, or prediction of sur-
vival rates are of importance, the Cox PH 
model may have some limitations [3]. In 
practice the Cox PH model is used for esti-
mating hazard ratios and little else. Where 
more information is required, the baseline 
hazard is required. For example, the behav-
ior of the hazard function itself might be 
of medical interest [2,4,5]. Differences in 
practices between hospital sites may result 
in hazard functions whose shape varies and 
might explain differences in mortality rates. 
In health economic evaluation, prediction 

of survival proportions beyond the observed 
follow-up period of a clinical trial are often 
required (extrapolation) so that future health 
benefits over the entire life time of patients 
can be estimated [6,7]. Flexible parametric 
models can be useful to predict the target 
number of (death) events [8]. In clinical trials, 
sample sizes are estimated based on the tar-
get number of events required. Follow-up of 
death events is often an ongoing process until 
trial completion or when the target number 
of events required are reached. Current pat-
terns of (death) events are used to predict 
when the trial is likely to be stopped or fur-
ther recruitment closed. This is sometimes 
achieved using parametric models assum-
ing Weibull distributions. It is plausible that 
flexible parametric methods can improve on 
the pattern of death events and consequently 
estimate when the target event rates might be 
achieved [8]. This way clinical trial logistics 
(e.g., reporting and staff recruitment) can 
be planned more accurately. Standard para-
metric models (e.g., Weibull) could be used 
in these applications, but not all will retain 
the useful assumption of PH or even fit the 
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observed survival pattern well. Efficient estimation 
of a smooth survival curve in situations where there 
are non-PH or modeling using proportional odds 
can therefore be implemented using more flexible 
parametric methods.

Applications in cancer surveillance
In PH regression, the relationship between a prognos-
tic factor and patient survival is summarized in the 
hazard ratio. The PH model is particularly useful for 
assessing the impact of covariates on patient survival 
experience at an ‘average’ level, but has no simple inter-
pretation at an individual level. Parametric modeling 
of survival data offers a way of presenting results using 
understandable metrics and visual displays that can be 
easily interpreted for a wider audience.

Cancer registries increasingly collect important 
prognostic factors useful for oncologists, policy makers 
and others in order to make decisions on expected sur-
vival proportions for subgroups of patients. Calculat-
ing patient- and stratum-specific survival is not easily 
accomplished using Cox PH modeling. For example, 
calculating the survival probability at a specific time 
point after diagnosis, for an individual with a specific 
set of prognostic covariates may be particularly use-
ful for policy makers and planners, especially as far as 
assessing the future costing of cancer treatments; this 
is difficult with the Cox PH model, especially when 
interactions with the time scale are present. The para-
metric modeling described here does facilitate such 
computations.

Currently, software for implementing flexible para-
metric models is restricted to the more commonly used 
Stata [2] software. R code is also available for imple-
menting extensions of the Cox model is also available 
using the ‘flexsurv’ program from the comprehensive 
R archive network archives [9].

The SAS® software [10] is widely used in academia 
and industry and currently does not have a specific 
option to implement these useful models. We therefore 
introduce a suite of SAS macros with similar function-
ality to that available in the Stata program ‘stpm2’ [2] 
and postestimation command ‘predict’ that can be 
used to fit these models.

This paper will first discuss briefly aspects of para-
metric modeling, then, outline flexible parametric 
methods, followed by details of the technical notation. 
Following this, the computational algorithm used in 
SAS code will be provided and finally examples of 
using the SAS macro. Supplementary Data 1 describes 
the input SAS dataset and Supplementary Data 2 
details parameters and macro call set up using the 
SAS code with further descriptions to help the user. 
The SAS code for the macro suite is available from the 

authors on request and/or is also available for down-
load from details in the references [11] (Supplementary 
Data 3).

Parametric modeling
Survival analysis is often reported using three com-
monly used methods: Kaplan–Meier (KM) methods, 
Cox PH models and parametric modeling. The KM 
method does not involve modeling and estimates of 
survival probabilities are based on using a nonparamet-
ric method (product limit estimator) to estimate the 
survival function [12]. When it is of interest to relate 
survival with covariates, a semiparametric method 
using the Cox PH model is often used. The Cox PH 
model is often adopted when the probability distribu-
tion of the sampled survival times is unknown or it 
might be complicated to fit a model to the data.

The third method is the parametric approach where 
it is tentatively assumed that the probability distri-
bution of survival times is known (e.g., assuming a 
Weibull or Gompertz distribution).

In the Cox PH model, the hazard function for 
patient i, is:

h (t) (X ) h (t)i i 0z=

where h
0
(t) is the baseline hazard function and ϕ(x

i
) is 

a function of explanatory variables, x
i
. The baseline haz-

ard function is the hazard function with the covariates 
all held at a reference level. The baseline hazard is not 
estimated when fitting a Cox model. In the case of a clin-
ical trial with a single explanatory variable (treatment) 
with two treatments (active and control), h

i
(t) is:

h (t) h (t) exp (X ) *i 0 ib=

where x
i
= 1 for the active treatment and x

i
 = 0 for the 

control. When the treatment effect is estimated, the 
h

0
(t) terms cancel out (through the partial likelihood).
When a parametric model is required and the PH 

model is appropriate, the Weibull function is one 
commonly employed model. In this case, the baseline 
hazard function for a Weibull model is given by h

0
(t):

h (t) t0
1

mc= c -

where λ and γ are scale and shape parameters, respec-
tively. Therefore, the hazard rate for an individual patient 
i, consist of two parts: the baseline hazard (i.e., h

0
[t]) and 

the covariate function ϕ(x
i
). In the case where covariates 

effect the baseline hazard multiplicatively, as in the Cox 
PH model, the covariate function is:

(X ) exp ( X )i i iz bR=

Therefore, the Weibull hazard function for an 
individual i, is [11]:

h (t) t * exp (X X ...Xi
1

i i 2 2 k kmc b b b= + +c -
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Parametric models of the type above can be a use-
ful starting point to model survival data and in many 
cases one of the standard parametric forms might be 
adequate.

However, not all parametric models are suited 
in situations when PH does not hold such as some 
accelerated failure time models (e.g., log-logistic). 
Moreover, when the PH assumption is reasonable, 
the simple parametric models may not capture the 
underlying shape of the hazard function. Where PH 
is not a reasonable assumption, but models on other 
scales (e.g., AFT/proportional odds) are adequate, 
time-dependent hazard ratios may be still of direct 
interest and the flexible parametric framework offers 
a means to estimate them. Therefore, a more flex-
ible approach to modeling survival time might be 
required.

Flexible parametric modeling
Extensions to the Cox model have been proposed ear-
lier. Abrahamowicz et al. [13] and Wyant and Abraha-
mowicz [14] used splines to model the baseline survival, 
including linear and nonlinear effects of covariates. Flex-
ible parametric modeling methodology as expounded 
by Beck and Jackman [15] and Royston and Parmar [16] 
is based on using a ‘flexible’ polynomial function for the 
hazard, the Royston–Parmar (RP) model. This consists 
of several functions which are joined together at ‘knots’ 
in such a way that the overall fitted function is smooth. 
The idea can be compared with linear spline fitting, 
but instead of linear splines (which are polynomial 
functions in the first degree), third-degree polynomial 
curves are joined together to fit the observed data.

The general idea behind flexible parametric modeling 
involves joining pairs of data points using higher degrees 
of polynomial functions (e.g., quadratic for order two 
and cubic for order three, or fractional polynomials). 
One useful property of using splines is that the underly-
ing functional form does not need to be known (Kru-
ger) [17]. Splines can be used in the context of a Cox 
PH model to smooth the hazard function (Sleeper and 
Harrington) [18], however, in this paper we present the 
use of splines for fully parametric models. Although 
the Weibull model is a useful alternative to the Cox PH 
model, especially when the assumptions around distribu-
tions are reasonable, a more flexible approach (Royston 
and Lambert; Royston; Lambert et al.) [2,19,20] by directly 
modeling the (log cumulative) baseline hazard function 
h

0
(t) as a polynomial function has shown to be a versatile 

approach to fitting smooth survival functions.

Applications to cancer surveillance
In our application of the SAS code in cancer surveil-
lance, we give examples of estimating relative survival 

and crude probability of death (CPD). These will be 
briefly discussed.

Relative survival
Relative survival addresses a question such as ‘what are 
the chances of surviving 5 years after diagnosis, in the 
hypothetical world where cancer is the only possible 
cause of death?’ Relative survival methods make use of 
population life tables, rather than cause of death data, 
which is often used in the estimation of ‘net’ survival, 
although both measures address the same question. 
Relative survival is of great importance when compar-
ing patient outcomes between differing jurisdictions, 
or over time, when background mortality rates differ.

Crude probability of death
This measure addresses a slightly different question: 
‘what are the chances of surviving 5 years after diag-
nosis in the real world where a patient may die of some 
other cause first?’. This implies a competing risks 
framework, where death due to cancer and death due 
to other causes are considered to be independent.

Both the above measures imply an excess hazard 
model, where the user specifies a background prob-
ability of the event derived from local life tables, 
matched on attained age (at the time of the death), 
sex, time period and any other determinants of gen-
eral population mortality that are of interest and 
available. The estimation of CPD requires numerical 
integration, which can be accomplished in the post-
estimation step that follows fitting a relative survival 
model. Cronin and Feuer [21] described the computa-
tions from relative survival estimated in a life table 
framework. Technical details of the estimation in the 
parametric modeling framework described here have 
been described by Lambert [20].

Notation & methods
The following notation based on Royston et al. [2] and 
Royston [19] is used for a brief exposition of the flex-
ible parametric modeling approach. This is also the 
description provided in the use of stmp2 command in 
Stata.

The survival function S(t) for a Weibull distribution 
is:

S (t) exp ( t )m= - c

The hazard function is:

h (t) h (t) exp X0 b= ^ h

The cumulative hazard function is therefore:

H(t) H (t) exp (X ) ( (u) du) exp (X )0 0
t

0b b= = ∫ h  
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Transforming to the log cumulative hazard scale 
gives so that we get a linear function of log (natural 
logarithm) time:

Ln H (t) Ln Ln S (t) Ln ( ) Ln (t)m c= - = +6 @" ", ,

Adding covariates gives: Ln {H(t|x
i
)} = Ln(λ) + 

γLn(t) +X
i
β, where Ln(λ) + γLn(t) is the baseline log 

cumulative hazard function (covariates on an additive 
scale). A covariate function that is proportional on the 
hazard scale is also proportional on the cumulative 
hazard scale.

The hazard and survival functions are required for 
likelihood estimation of model parameters. Using these 
estimates, predictions can be made through the para-
metric functions. These predictions can be improved 
through the use of splines which are more flexible.

Restricted cubic splines
Splines are flexible parametric functions defined 
through piecewise polynomials. The points at which 
polynomials are joined together are called ‘knots’ 
which ‘forces’ the fitted function to have zero-, 
first- and second-order derivatives [2,19].

Restricted cubic splines can be fitted by creat-
ing K-1 derived variables for K nots, k

1
, k

2
,…. k

k
. 

A restricted cubic spline can therefore be noted as: 

S (x) Z Z Z ... Z0 1 1 2 2 3 3 k 1 k 1c c c c c= + + + + + - -  

With derivatives (termed basis functions) compute 
as:

Z x and Z (X K ) (X K ) (1 ) (X K )

..for j 2, ..., K 1

and (k k ) / (k k )

1 j j
3

j
3

j j
3

j k j k 1

j

}

W W= = - + - - - - -
+ = -

= - -

Incorporating splines in flexible parametric 
models
A PH model on the log cumulative scale can be written 
(Royston) [19] as:

Ln (H (t X )) Ln (H (t)) x1 0 1b= +  

The PH model using a (restricted) spline function of 
Ln(t), with knots k

0
 is also: S{Ln(t)|γ,k

0
).

Hence,

Ln (H (tX )) Z Z Z X

M( , ) X , where M ( , ) Z Z Z

i 0 1 1i 2 2i 3 3i i

i 0 1 1i 2 2i 3 3i

i h c c c c b

| c b | c c c c c

= = + + + + + + +

= + = + + +

Royston et al.2 in a similar notation, using [5] define 
the basis functions as:

z (
z

x k ) (x k ) (1 ) (x k )
.. for j 2, ...,m 1
j j

xj
3

j min
3

j max
3

m m=
=

- + - - + - - -
+ = +

Therefore, λ
j
 = (k

max
 - k

j
)/(k

max
 - k

min
), where k

max
 

and k
min

 are called the external knots and k
1
….k

m
 are 

internal knots stated prior to the final analysis.
The likelihood function for an uncensored observa-

tion is:

L t
1

d
dM( , ) exp (q exp (q))

|

\ c=
-

For a censored observation, L = exp(-exp(q)), where 
q = Ln H(t|x).

Royston and Parmar [16] suggest that the starting val-
ues for solving [6] can be established by a fitting a Cox 
model that accounts for censoring, transforming the 
estimated survival function to the log cumulative hazard 
scale, and deriving estimates finally using linear regres-
sion. For time-dependent effects, interactions with the 
time scale and the covariates of interest can be specified.

The SAS macro estimates the parameters in [6] using 
a maximization of the full log (natural log) likelihood 
using a Newton–Raphson optimization search algo-
rithm with ridging in the PROC NLMIXED procedure.

Computational algorithms in SAS
The computer program has been tested with SAS ver-
sion 9.3 and 9.4. No previous SAS macro is available as 
far as we are aware for this type of analysis. The only 
example of SAS code we identified which might be in 
anyway similar was in a recent online PhD thesis where 
the objective was simulation of data in the context of 
a single knot spline model [22] The SAS code used in 
the thesis was clearly not meant to be generalized and 
moreover does not fit covariates nor is there evidence 
the output from the code is comparable to Stata.

The SAS code we present consists of four main 
macro programs: %sas_stset, %sas_stpm2, %predict 
and %rcsgen. The macros were written to mirror usage 
of the corresponding Stata commands [2] of the same 
name. The macro calls are reasonably straight forward 
to use, while programmed checking for consistency 
of parameter specifications will help users avoid many 
errors. The focus of the work on this macro was to facil-
itate fitting RP models in SAS. The stset analogue we 
introduce is only an introduction, and not intended to 
replicate all of the functionality in the Stata command. 
The SAS macro %sas_stpm2 is designed to allow for 
estimation in situations where there is late entry (for 
example, in so-called ‘period’ analysis, or an analysis 
where age at diagnosis is the time scale), but the pro-
grammer would have to manually code the appropri-
ate structures in the dataset to do so. Example code in 
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Supplementary Data 1 is given. In this SAS program 
the only RP model available at present is on the log 
cumulative hazard scale. RP models are strictly a class 
of model with different link functions of the survival 
function. Further development to other link functions 
can be built in the current macro to extend to other link 
functions. The details of the macro calls are presented 
in Supplementary Data I and II.

%sas_stpm2 defines and fits the RP model using the 
standard dataset created by %sas_stset. This part of the 
macro fits models on the log cumulative hazard scale. 
The user supplies parameters to the macro in order to 
specify covariates, the number of degrees of freedom 
for knots in baseline hazard, baseline risk (for relative 
survival models), any variables which can be consid-
ered as time-varying covariates (TVC), degrees of free-
dom for TVC, indicators to turn off the intercept in 
a model, an indicator to turn off orthogonalization of 
spline variables and an indicator to turn off computa-
tion of baseline splines. As an alternative to specifying 
degrees of freedom for splines, knot locations (for both 
baseline and TVC splines) can also be specified. The 
term ‘TVC’ refers to interactions between the time scale 
and specified covariates. This is the nomenclature pre-
sented in the documentation around Stata’s stpm2, and 
it is used here in the same vein. Definitions of variables 
whose values change over the course of follow-up are 
not encompassed in this software.

%predict computes estimates and confidence inter-
vals for a variety of survival functions for a specified 
covariate pattern using estimates from the previous run 
of %sas_stpm2. The time points used for estimation 
can be either the actual time points in the standard 
dataset, or a user-supplied set of time points. This latter 
option is most useful when computing survival func-
tions from large datasets. The function to be predicted 
at each point can be a cumulative measure (cumulative 
hazard or survival) or one of hazard, hazard difference 
or hazard ratio. Confidence intervals for the cumula-
tive functions (cumulative hazard, survival) may be 
computed using direct analytical integration (as used in 
Stata and replicated in the SAS macro, using the %pre-
dict call), the methods suggested by Carstensen [4] or 
using bootstrap methods.

%rcsgen is used by %sas_stpm2 and %predict, but 
can also be called to generate restricted cubic splines 
for a continuous covariate for purposes of analysis. 
An example would be to analyze the effect of age as a 
continuous variable allowing for nonlinear effects.

Example applications
We now provide some examples of how to use the SAS 
macro. For each example, we explain the background, 
data used, macro call and results.

Example 1: application to a Phase III 
randomized clinical trial in lung cancer patients

Background
The data are from a published Phase III clinical trial 
in 670 UK non-small-cell lung cancer patients treated 
with erlotinib compared with placebo [23]. Nearly all, 
(98%) of the patients had died by the time of analyses 
(658 deaths). The objective is to fit a parametric sur-
vival curve to each treatment group to predict the sur-
vival pattern and compare the results from Stata and 
SAS software.

Data
In this analysis we use overall survival as the time to 
event variable OS_event as the censoring variable 
(using a value of 1 for deceased), trt as the treatment 
variable (coded as 1 or 0) and patient identifier (patien-
tid). Hence only four variables were used as inputs for 
the SAS macro call.

SAS macro call
Starting with a dataset (named ‘topic’) that contains 
variables identified above, the following sequence of 
macros are called:

•	 %sas_stset(topic, os_event(1), os, patientid); **data 
set up**;

•	 %sas_stpm2(trt, scale = hazard, df = n ); ** 
estimation of RP model*;

•	 %predict(surv, survival, at = trt:xx); **predicted 
survival rate*.

The first macro generates a standard dataset called 
‘_events_’ in the user’s ‘work’ library. The second 
call describes the RP model to be implemented and 
performs estimation. ‘df = n’ refers to the number of 
spline variables to be computed. Setting df = 1, is con-
sidered be equivalent to a Weibull model [2]. Note 
that df = 1 implies 1 derived variable. The number 
of knots generated is df + 1, since default knots are 
placed at the minimum and maximum of the non-
censored survival times (also called boundary knots). 
If df is greater than 1, then df - 1 internal knots are 
placed at locations such that approximately equal 
numbers of noncensored events are in each interval 
between knots.

The%predict macro in the third step estimates and 
saves the predicted survival proportions based on esti-
mates from the previous execution of %sas_stpm2. 
The ‘at = trt: xx’ is the syntax for specifying a particular 
covariate pattern at which to predict survival rates (‘at 
= trt:1’ for erlotinib for example).
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Results
Results from SAS are identical (Table 1) to the Stata out-
put, which confirms the SAS macro is performing as 
expected. The empirical survival curve (Figures 1 & 2) is 

also plotted along with the Weibull and RP(3) model. 
The KM (black solid line) is approximated well by the 
RP (dotted line) with three knots. The Weibull (dashed 
line) is a slightly worse fit.

Table 1. Estimates of coefficients and hazard ratios from analysis programs run in Stata and SAS.

Estimated 
parameter 

Cox PH Weibull† RP(1)‡ RP(3)§

HR(SE) [Stata] 0.95 (0.08) 
[0.95 (0.08)]

0.93 (0.09) 
[0.93 (0.09)]

0.93 (0.09) 
[0.93 (0.9)]

0.95 (0.08) 
[0.94 (0.08)]

Lower 95% [Stata] 0.82 [0.82] 0.78 [0.78] 0.78 [0.78] 0.81 [0.81]

Upper 95% [Stata] 1.11 [1.11] 1.11 [1.11] 1.11 [1.11] 1.09 [1.09]

Predicted 6 month 
survival¶ [Stata]

 40.1 vs 38.4 [40.1 vs 
38.4]

 39.5 vs 37.2 [39.5 vs 
37.2]

 34.0 vs 32.2 [34.0 
vs 32.2]

AIC 7340 2238 2238 2176

Stata results are presented in square brackets.
†Using PROC LIFEREG in SAS.
‡RP(1): flexible parametric using one knot.
§RP(3): flexible parametric, Royston–Parmar (RP) model using three knots.
¶Observed 6 month survival rates (Kaplan–Meier) for erlotinib versus placebo were 36.3 versus 31.9%.
AIC: Aikakes Information Criteria; HR: Hazard ratio; PH: Proportional hazard; RP:Royston–Parmar; SE: Standard error.

Figure 1. Comparison of predicted survival rates from Weibull and flexible parametric model applied to data from 
the TOPICAL trial using SAS macro (treatment arm). 
RP:Royston–Parmar.
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Interestingly, the RP(3) offers a ‘better’ fit than 
RP(1) (AIC smaller). The Weibull is a commonly 
employed model to compute the mean survival time 
(area under the survival curve) in economic evalua-
tions for calculating quality adjusted life years [7,16]; 
in this example the mean survival time for erlotinib 
versus placebo were 6.95 versus 6.53, 6.96 versus 6.47 
and 7.05 versus 6.62 months for the KM Weibull and 
RP(3) models, respectively. The Weibull model there-
fore overestimates mean survival time and hence qual-
ity adjusted life years (assuming quality of life is the 
same between groups) in this example (difference of 
0.49 vs 0.43 for Weibull and RP(3), respectively.

Example 2: application to cancer surveillance
Background
In the field of cancer surveillance, policy makers and 
planners are often interested in measures of the impact 
of a diagnosis of cancer. Here, we apply the SAS macro 
to a Canadian cancer population (size under one 
million) to compute examples of RS and CPD.

SAS macro calls
The SAS code used to fit a relative survival model 
starts by appending the expected mortality rate to each 
subject, given that subject’s sex, attained age and year 
of death (or censoring).

Relative survival
The input dataset CRC_deaths is first created with 
the variables required for analysis (age, sex and stage at 
diagnosis, details not shown), plus the general popula-
tion probability of death (given attained age, sex and 
year of death):

•	 Data CRC_deaths:

•	 Merge CRC;

•	 Life_1991_2011 (keep = age sex death_year rate);

•	 By age sex death_year; run

•	 We then create the standard dataset that is required 
for the model fitting and estimation steps:

Figure 2. Comparison of predicted survival rates from Weibull and flexible parametric model applied to data from 
the TOPICAL trial using SAS macro (placebo arm). 
RP:Royston–Parmar.
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•	 %sas_stset(CRC_deaths, censor(0), surv, 
patient_ID);

•	 This is followed by executing the macro:

•	 %sas_stpm2 (sex stage2 stage3 stage4 agercs1 
agercs2 agercs3, scale = hazard, df = 3, tvc = sex 
stage2 stage3 stage4, dftvc = 2, bhazard = rate);

which specifies covariates for sex, stage (as three 
indicator variables) and age. The above call requests to 
fit a model with sex, age (as a set of three spline vari-
ables) and stage at diagnosis, with stage I as a reference 
level. The TVC option has also been used, allowing 
the shape of the hazard functions for sex and stage to 
vary over time in a nonproportional way. The bhazard 
parameter is used to specify the life table probability, 
making this a relative survival or excess hazard model.

To compute the estimated survival curve for age 55 
years, with sex and stage at the reference levels, we first 
compute the specific values of the age splines by a call 
to%rcsgen:

%rcsgen( age_yrs, gen = agercs, knots = &age_
knots., tmatrix = age_mat, scalar = 55);

The age, knots and matrix to orthogonalize the com-
puted splines have been saved from an earlier call to 
%rcsgen. The use of the %predict macro now provides 
survival estimates at the specified covariate values:

•	 %predict(Rt, survival, at = agercs1:. agercs2:. 
agercs3:. zero);

•	 The other covariates are held at their refer-
ence values (males, stage) by the use of the ‘zero’ 
keyword.

Results from the use of the %predict macro are 
interpreted as relative survival, excess hazard, excess 
hazard ratios, etc. and can be displayed graphically. 
Table 2 shows the estimated net probability of death 
(NPD, i.e., 1-relative survival) at 5 years, for male 
patients diagnosed at either 55 or 85 years of age, with 
colorectal cancer in Nova Scotia. A note of caution 
should be added that that relative survival is not an 
estimation of net survival even if on most situations the 
difference is small.

Estimates by stage of disease at diagnosis are pre-
sented. The SAS and Stata estimates are essentially 
identical.

Crude probability of death
Estimation of crude probability of death implies a 
competing risks framework, and requires knowledge of 
the background risk of death over the follow-up time. 
The cumulative background risk of death is estimated 
from local complete life tables, and the excess risk of 

Table 3. Estimates of model fits and survival probabilities from Stata and SAS for SOCCAR for non-
proportional hazards.

Survival (month) Concurrent (%) Sequential (%)

 RP(2) KM Weibull RP(5) KM Weibull

12 71 70 78 80 83 76

24 47 50 53 46 46 47

36 33 33 39 26 26 39

RP: Royston–Parmar; KM: Kaplan–Meyer. 

Table 2. Estimates of net and crude probability of death from SAS and Stata.

Estimates for Stage NPD (%) CPD (%)

    Cancer Other causes

  SAS Stata SAS Stata SAS Stata

Male (55 years) Stage I 5.8 5.8 5.7 5.7 3.3 3.3

 Stage II 9.7 9.7 9.5 9.4 3.2 3.2

 Stage III 24.1 24.1 23.6 23.6 3.0 3.0

 Stage IV 87.6 87.6 86.7 86.7 1.2 1.2

Male (85 years) Stage I 20.7 20.7 18.3 18.2 39.9 39.9

 Stage II 32.7 32.7 26.7 26.5 37.5 37.4

 Stage III 65.7 65.7 52.0 51.9 29.6 29.6

 Stage IV 100.0 100.0 95.3 95.1 4.3 4.3

CPD: Crude probability of death; NPD: Net probability of death; 
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death is estimated from a net survival model, as above. 
Thus, the information needed to compute crude sur-
vival probabilities is the same as is required for relative 
survival. The details of the calculations are given in 
Lambert [20] and involve numerical integration using 
methods suggested by Carstensen [4] Estimates of the 
crude probability of death (due to cancer and due to all 
other causes) are presented in Table 2. Again, the SAS 
and Stata estimates are essentially identical.

For a male aged 55 years with stage III cancer, the 
NPD was about 24%; the risk of death from cancer 
alone was about 24% and from other causes about 3%. 
For an older male, the corresponding risks of death 
were 66, 52 and 30% for NPD and the two crude 
probabilities of death, respectively, highlighting the 
greater estimated impact of noncancer causes of death 
at older ages.

Example 3: application to a randomized 
Phase II cancer trial in lung cancer with non-
proprotional hazards
The SOCCAR trial (Maguire et al.) [24] compared sur-
vival outcomes in non-small-cell lung cancer patients 
receiving concurrent versus sequential chemotherapy. 
In this example we show the model effect and fit when 

the KM curves cross and the PH assumption is vio-
lated. Table 3 shows the results from this analysis and 
compares with Stata.

The SAS macro was used to generate the follow-
ing survival probabilities at each of 12, 24, 26 and 48 
months. The results from SAS and Stata are identical.

Table 3 compares estimates of survival rates and 
model fits between SAS and Stata. RP(5) and RP(2) 
when fitted separately to each treatment group showed 
the closest estimates to the empirical KM curve 
(Figures 3 & 4). The AIC were identical between SAS 
and Stata (e.g., AIC = 325.1 and 139.5 for RP[2] and 
RP[5], respectively). Note that parameter estimates 
(not shown) cannot be compared between SAS and 
Stata because SAS and Stata orthogonalize splines 
in different ways. The Log Likelihood (-2LL) were 
also identical (-2LL = 312.6 and 127.8 for RP[2] 
and RP[5]), respectively. The above is an example of 
the TVC option to allow for a non-PH model to be 
evaluated.

Event prediction
One potentially useful feature of parametric survival 
modeling is the ability to predict (death) events by 
modeling the survival (hazard) time. This can be very 

Figure 3.  Royston–Parmar models fitted to SOCCAR data using SAS Macro. 
RP:Royston–Parmar.
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useful in clinical trials because often the timing of 
when the last desired event occurs is a trigger for pre-
paring for trial closure, reporting results and several 
other trial operating procedures such as when funding 
is likely to cease (as trial staff are needed for a longer 
period if event rates are slow).

Recent approaches to event prediction have used 
Weibull type models [8], however the potential of flexi-
ble parametric model to improve predictions of the sur-
vival more closely can be realized with the use of this 
macro for interested researchers. The use of extrapola-
tion to estimate future health benefits (and costs) and 
subgroup analyses is supported by the National Insti-
tute of Clinical and Health Excellence as evidenced by 
the Decision Support Unit’s technical document on 
approaches to extrapolation.

Conclusion
Availability of this SAS program will increase the use 
of applying flexible parametric models. We have shown 
results from SAS which are identical to that of Stata 
using various examples. In addition, we discussed how 
the code can be used for event prediction which can be 
very useful for clinical trial logistics and planning, par-

ticularly when the event rate is low or in rare cancers. 
A limitation to our code is that it is long (although 
the Stata codes are even longer) and might take some 
time for a user to become fluent with it. However, the 
actual macro call is short and reasonably straight for-
ward. It is hoped that the availability of this SAS code 
will result in more widespread use and publication of 
flexible survival methods. The SAS code is available to 
download on request from the authors [10].

Future perspective
The field of flexible parametric modeling will increase 
in the next years especially in applications in oncol-
ogy. As the cost of cancer care becomes more expen-
sive, there will be a need to understand the benefits 
and costs associated with such treatments not just over 
the duration of a clinical trial, but over the survival 
period outside the trial. In addition, estimation of sur-
vival rates for specific groups of patients is essential for 
determining future policy direction. Flexible paramet-
ric models will also become more important as registry 
data and cancer surveillance data become more impor-
tant for assessing real world evidence for new treat-
ments. Consequently, this paper, through the use of an 

Figure 4. Royston–Parmar models fitted to SOCCAR data using SAS Macro. 
RP: Royston–Parmar
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SAS macro will facilitate further use and development 
in this area.
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Executive summary

•	 The Cox proportional hazards model has dominated survival analyses methods for over 40 years.
•	 Parametric methods are being used increasingly.
•	 Flexible parametric models are shown to improve upon standard parametric methods for modeling survival 

type data. Such methods can have a wide area of application such as in clinical trials, health economics and 
cancer surveillance.

•	 A new SAS code is provided that will facilitate use of such methods.
•	 Data from two randomized trials and a cancer surveillance study were used as examples.
•	 The SAS code and output has been validated against Stata code and output and both provide identical results.
•	 This article should result in a wider use of flexible parametric models being used.
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